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Abstract  
A metabolic disorder called hyperglycemia characterises diabetes mellitus. Insulin therapy is 
crucial for those with type 1 diabetes and severe type 2 diabetes. The most frequent delivery 
technique is still subcutaneous injection. Due to their advantages in reducing patient's discomfort, 
worry, and tension, non-invasive insulin delivery systems are being researched. The simplicity of 
administration and lack of hepatic first-pass metabolism make transdermal delivery techniques 
extremely popular. One of the most promising methods is microneedle technology, which uses 
painless, minimally invasive needles to inject insulin through the stratum corneum of the skin. 
This article will examine the development of MNs for transdermal delivery of insulin, including 
hollow MNs, dissolving MNs, which allow for precise control of insulin dosage.Insulin was 
localised using dissolving polymeric microneedle (MN) patches made of gelatin and sodium 
carboxymethyl cellulose (CMC). The ability of their in vitro skin implantation was tested by 
staining the skin after the patches were removed with tissue-marking dye. Optical coherence 
tomography (OCT) was utilised to track the MNs' current penetration depth, and scanning electron 
microscopy (SEM) was employed to analyse changes in the MNs over time. Thus demonstrates 
that using a gelatin/CMC MN patch for insulin delivery results in satisfactory relative 
bioavailability compared to a conventional hypodermic injection and can be a promising delivery 
method for medications containing poorly permeable proteins, such as those used to treat diabetes. 
 Keywords: Insulin loaded , Diabetes mellitus, Transdermal, Polymer,Carboxymethyl cellulose 
and  Dissolving microneedles 
 
1. Introduction 
Since it was first discovered about 1500 BCE, diabetes, once known as "honey urine," has been 
recognised as a lethal and devastating ailment for more than 2000 years1, 2 According to the 
International Diabetes Federation (IDF) Diabetes Atlas 9th Edition 20193, around 463 million 
people aged 20 to 79 throughout the world currently have diabetes, and this figure is projected to 
climb to 700 million by 2045. A group of metabolic diseases characterised by persistent 
hyperglycemia are collectively referred to as "diabetes mellitus." Diabetes pathophysiology may 
be impacted by poor insulin production, poor insulin action, or both. 4  
Patients who have type 1 diabetes must use insulin (insulin dependence). Patients with severe type 
2 diabetes mellitus (insulin resistance) also require insulin to maintain blood glucose homeostasis. 
The study found that human insulin has a molecular weight of 5.8 kD and is composed of an A 
chain with 21 amino acids and a B chain with 30 amino acids.5 
Subcutaneous (SC) injection using a syringe, insulin pen, or insulin pump is still the most common 
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way to give insulin treatment because it is less expensive, more effective at delivering insulin, and 
has a greater bioavailability.6, 7 Patients still require to inject 2-4 times day even if long-acting 
insulin (up to 24 h) has been developed. Numerous injections might result in pain and discomfort 
as well as edoema, illness, and local tissue necrosis at the injection sites.8, 9 

Furthermore, real-time adjustments to the injection dosages are required to induce fast 
hypoglycemia after a meal and moderate but sustained blood glucose reduction before bed. Due to 
the difficulties in precisely giving the necessary dosage, hyperglycemia and hypoglycemia are 
frequent. Furthermore, due to its low stability as a biological peptide, insulin must be stored 
between 2 and 8 °C for distribution and shelf life, which makes transporting and storing it in some 
underdeveloped nations more challenging.10  
Despite having comparable limitations, the IM version is frequently utilised for bolus and quick 
computations. Today's improvements in insulin medication concentrate on creating insulin 
formulations that are more reliable, practical, pleasant, long-acting, and glucose-monitoring. In 
1998, the first microneedles (MNs) were created as a trimmer way of pharmaceutical 
administration.11 In healthcare settings, intravenous (IV), intramuscular (IM), subcutaneous, or 
transdermal (topical) usage are the only authorised methods for providing parenteral medicine. 
The best bioavailability and dosage control are provided by the IV approach, which has the 
disadvantages of discomfort, contamination, and complication in maintaining venous access for 
the administration of opioids, antipsychotics, and peptide vaccines. 
The subcutaneous method is preferable for administering medications like insulin or certain 
immunotherapy treatments, but it has several disadvantages, including discomfort, irregular 
pharmcokinetics, and low absorption. Alternative delivery methods, such nasal or aerosolized 
distribution, usually raise concerns about dose repeatability and regional effects. 
The availability of a fairly limited number of medications, many of which are utilised in 
dermatology, limits the use of topical methods. The pharmacologic agent's capacity to diffuse 
through the stratum corneum, the top layer of skin, largely limits this route.12 It is recognised that 
physical and chemical characteristics of a molecule, such as its molecular weight, ionisation, 
carrier nature, and dilution ratio, can impact how well it can permeate the skin.13 Other 
characteristics like hydrophilicity and lipid solubility might also be influential. Microneedles can 
pierce the stratum corneum at the top of the epidermis, but they cannot penetrate the dermis deep 
enough to activate the nociceptive nerve terminals.14 Additionally, they have shorter, narrower 
geometries that make it easier to avoid discomfort.15 
MNs can also control how chemicals are delivered to the dermis, which has a lot of lymphatic and 
vascular perfusion. For systemic applications, the various pharmacokinetic and pharmacodynamic 
characteristics of this layer are also being studied.16 
Drug delivery most frequently makes use of various MNs systems. Solid MNs have the potential 
to pierce skin and open pores. In order to aid in dispersion following removal, the region is 
subsequently coated with a transdermal patch or gel formulation. Skin that has previously been 
covered with the material can likewise be treated with MNs.17  Drug-filled biodegradable MNs are 
usually designed to break under the skin and deliver controlled drug release.18 Drugs are delivered 
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through hollow MNs in a way comparable to injection, but with the aid of physical forces such as 
diffusion and pressure.19 Numerous materials, including silicon, metal, biodegradable or non-
biodegradable polymers, glass, and others, have been used to create microneedles.20 
Their small size limits both the total dose that can be administered to them and the amount of time 
it takes for that dose to be absorbed by the dermis.18 As a result, drug compositions must be 
carefully altered. According to past research, the two-step manufacturing process for MN patches 
offers a number of advantages.21,22 We created and used diabetic mouse and human cadaveric skin 
models to assess the capability of a patch constructed of two-layer dissolving MN patches made 
of gelatin and sodium carboxymethyl cellulose (CMC) for medicine administration.23 
Fewer research have looked at the effects on human cadaveric skin, despite the fact that several 
studies have proposed novel techniques for making MN patches and evaluated their effects using 
animal models. Fewer research have looked at the effects on human cadaveric skin, despite the fact 
that several studies have proposed novel techniques for making MN patches and evaluated their 
effects using animal models. This work achieved many notable goals, including the publication of 
preliminary data on MN usage on human skin, the application of conventional techniques to 
evaluate MN effects, and the suggestion of an acceptable anatomic area of human skin for future 
clinical MN patch application. MNs' main goal is to develop clinical applications. 

2. Materials and Methods 

2.1  Substances 
Commercial MN patches were obtained from 3MTM (3M, St. Paul, MN, USA), and 
polydimethulsiloxane negative moulds were produced (PDMS; Sylgard 184, Dow Corning, 
Belgium). The following chemicals were bought from Sigma-Aldrich: gelatin (porcine skin, type 
A, 90-110 Bloom), CMC (MW 90 kDa), rhodamine 6G (R6G; MW 470.01 Da), fluorescein 5(6)-
isothiocyanate (FITC; MW 389.38 Da), and insulin (from bovine pancreas, 25 U/mg; MW about 
5.73 kDa) (St. Louis, MO, USA). 

2.2 Making Dissolving Gelatin/CMC MN Patches,  
The master templates for the 3MTM MN patches were utilised to produce the negative mouldings 
that were used to fabricate the MN patches.22 In a nutshell, a modified two-step procedure was 
utilised, in which a 10% gelatin solution was loaded with a medication and placed into each PDMS 
mould. The mould cavities were then filled by centrifuging the mixture at 4000 rpm for 30 minutes. 
After removing any remaining solutions from the mould surface, 10% CMC solution devoid of 
drugs was added on top of 10% gelatin, and the mixture was centrifuged for 10 minutes at 4000 
rpm. The two-layered gelatin/CMC MN patch moulds were all dried the next day at room 
temperature.24,25 

2.3 Manufacturing of MN Patches Containing Drugs 
In this work, R6G, a water-soluble red fluorescent dye, served as a low-molecular-weight model 
medication. A stock solution of 0.5 mg/mL of the dye was prepared by dissolving oit in deionized 
water. A 50 mL stock solution was added to each polymer solution. To create insulin-containing 
gelatin solutions, insulin-FITC that had been dissolved in 0.1 M HCl was added to the gelatin 
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solutions and mixed in a consistent ratio. The shapes of the drug-laden MNs were examined using 
an inverted fluorescent microscope, which also served to verify that the medications had been 
correctly loaded into the needle points of the MN patches. 

2.4 Mouse Skin Ex Vivo Penetration Tests 
Patches of MN were applied to mouse cadaveric skins using a homemade applicator and 9 N of 
force (about equivalent to that applied by the thumb) for 10 minutes in order to assess the insertion 
capabilities of the suggested gelatin/CMC MNs. After that, they were taken out, and scanning 
electron microscopy was used to track the MNs in the patches as they underwent morphological 
changes over time (SEM; S-3000N, Hitachi, Tokyo, Japan). 

2.5 Transdermal Delivery Imaging and Optical Coherence Tomography 
Prior to the patches being removed, the depth of MN penetration into the mouse skins was 
evaluated in real-time using optical coherence tomography (OCT; Chang Gung University, 
Taiwan) (during the 10-min application time). In order to see the transdermal delivery under 9 N 
of force over 60 minutes, patches filled with R6G were also put on mouse skins. Confocal 
microscopy was used to measure the vertical depth of the skin from the surface to the dermis. 

2.6 Insulin-Loaded MNs for In Vivo Transdermal Delivery  
The epidermal penetration of insulin in live animals was seen using the in vivo imaging system 
(IVIS; Xenogen 200, Caliper Life Sciences, Alameda, CA, USA) as a non-invasive analytical 
instrument. Anesthetized diabetic mice were photographed 10 min, 1 h, and 3 h after receiving 
MN patches loaded with FITC-insulin or not (control). All fluorescence data from this 
investigation were analysed using the IVIS and shown as photon flux (photons sec1cm2 
steradian1).26 

2.7 Transdermal Insulin Delivery via MN Patches 
We carried out the tests in accordance with the rules set out by the Chang Gung Memorial Hospital 
Laboratory Animal Center, and the Institutional Animal Care and Use Committee of Chang Gung 
Memorial Hospital approved the methods utilised in the animal investigations. The investigation 
was conducted using male C57BL/6 db/db mice that were eight weeks old. At the start of the trial, 
the average blood sugar level in each mouse was over 600 mg/dL. All diabetic mice (n = 6) were 
randomly assigned to one of three groups: the SC group, which received insulin injections (0.2 IU) 
subcutaneously into the abdominal skin using a hypodermic needle; the unloaded MN group; and 
the insulin-loaded MN group, which received insulin via unloaded MNs (0.2 IU per patch) applied 
to their backs and stabilised with tape. Following treatment, blood samples were taken at 0, 1, 2, 
3, 4, and 6 hours. Based on the starting point, the percentage change in plasma glucose levels at 
each time point was computed. 

2.8 Human Cadaveric Skin OCT Measurement and Tissue-Marking Dye Staining 
Human cadaveric skin was collected from patients' various anatomical sites. An informed consent 
was signed by each patient. The Chang Gung Medical Foundation's Institutional Review Board 
has explicitly authorised this study (IRB Nos. 103-3234B and 104-0046C). After the skin was 
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harvested, the subcutaneous fat was removed, and the whole thickness of the skin was preserved 
at 20 °C until use. To show repeatability, several samples (including those from donors' dorsal 
ears, volar forearms, medial thighs, and lower abdomens) were utilised. Before usage, each skin 
was dabbed with clean tissue paper to remove extra moisture after being frozen to room 
temperature. 

Using a handmade applicator, 9 N of force was applied for 10 minutes to human cadaveric skin to 
test the gelatin/CMC MN patches' ability to penetrate the skin. The insertion sites were visible 
after the patch was removed because the skin surface was exposed to a blue tissue-marking dye 
for 1 minute.19 After that, the blue spots were examined with a stereomicroscope (P6000, Nikon, 
Tokyo, Japan), and pictures were taken. OCT measurements were also utilised to determine the 
penetration depth of the gelatin/CMC MN patches in human cadaveric skins when applied for 10 
minutes with a 9 N force without peeled off. 

3. MNs are used to administer insulin transdermally 

Patients can self-administer, and MNs can increase patient compliance. It has enormous potential 
to replace conventional insulin therapy. Hydrogel and dissolving MNs can both be directly loaded 
with insulin for administration; this can considerably enhance the quantity of insulin delivered 
transdermally. Hollow MNs are an indirect auxiliary administration. Additionally, glucose-
responsive MNs can practically deliver accurate insulin dose that is tailored to the person's blood 
sugar in real time. 

3.1 Hollow MNs 

In order to constantly inject the liquid formulation into the skin through the needle cavity (often at 
a rate of 10-100 L/min), hollow MNs are made up of an empty cavity needle (5-70 m wide) and 
an external auxiliary device, such as a syringe, pump, gas, or electrical support.27,28 Hollow MNs 
share a fundamental construction with standard subcutaneous injection needles. When compared 
to other MN kinds, hollow MNs have a larger delivery capacity because their dose quantity and 
flow rate may be adjusted by an external auxiliary device, whereas coated or dissolving MNs can 
only be dosed according to the size of the needle and the number of needles.29,30 

Hollow MNs may be created using a broad range of materials, including silicon, metal, glass, 
ceramic, and polymers (Fig. 1).31,32 In recent years, interest has grown in polymers with good 
biocompatibility, including SU8 polymer, clay reinforced polyimide, and metal electroplated 
polymer.33,34 Microelectromechanical systems (MEMS), such as lithographic moulding, X-ray 
photolithography, etching, and laser ablation/cutting, can be used to create hollow MNs.32,35 To 
create a hollow MN array, Wang et al. used a polymer-based approach in conjunction with UV 
photolithography. 

The entire procedure was broken down into two steps: First, a polydimethylsiloxane (PDMS) 
mould with a pyramidal top was created using the photolithography technique. Next, hollow MNs 
were created using the SU-8 polymer on the integrated PDMS mould.36 The hollow stainless steel 
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MN array may be created utilising an unique fabrication technique of femto second laser 
micromachining, disclosed by Vinayakumar et al.37 It is simple to manage and produce various 
MN forms in a single exposure device utilising laser micromachining technology, avoiding 
multilayer masking and patterning, exposure, and chemical etching.3 

                     

Fig 1  Hollow MNs fabricated with silicon and polymers. Reprinted with permission from32 

Richa et alcreated a brand-new kind of insulin delivery system that consists of a hollow MN array, 
drug reservoir, and an IPMC membrane-actuated micropump.38 Two components made up this 
apparatus. The reservoir with entrance to the hollow MN array was the initial component. It was 
made from SU-8 polymer by direct laser writing. The micropump actuator assembly made up of a 
Nafion membrane sandwiched between two copper electrode rings coupled to an external electrical 
source made up the second component.38 The reservoir was topped with the micropump. Insulin 
was poured into the reservoir and then forced out through the MNs when the Nafion membrane 
was electrically actuated to deflect and press the liquid in the reservoir. 

The main part of this device was the micropump actuation assembly. The frequency and voltage 
response of the membrane have been characterised in this research using a Laser Doppler 
Vibrometer (LDV) in great detail. The traditional membrane was restrained either circularly or 
squarely in a micropump. Nafion membrane with eight cuts around the circumference was changed 
to enhance deflections. This novel MN device produced an insulin flow rate of 44.8 L/min, which 
is significantly greater than the standard membrane design. The administration of insulin might be 
made painless by adjusting the insulin flow rate between 20 and 45 L/min by varying frequency 
(0.1 to 0.5 Hz) and voltage (3-6 V).38 

The manufacturing of hollow MNs requires a complex procedure that is often difficult, time-
consuming, and costly.39 Due to its versatility, precision, and greater repeatability at the 
microscale, three-dimensional (3D) printing has gained more and more attention in Minnesota's 
manufacturing during the last five years.40 Stereolithography (SLA), fused deposition modelling 
(FDM), liquid crystal displays (LCD), selective laser sintering (SLS), and digital light processing 
(DLP) are only a few of the 3D printing technologies now under development.41–43 In order to 
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create a novel device (3DMNMEMS) for regulated insulin administration, Economidou et al. 
combined 3D printing technology with MN and MEMS (Fig. 2).44 With the use of laser SLA and 
photopolymerization-based technologies, they initially manufactured hollow MN patches. 

An MEMS-like diaphragmatic micropump was then linked to the hollow MN patch. A single dose 
of 0.5 IU insulin was completely identified in the receptor in 1 hour, according to an in vitro release 
assay. The in vivo investigation using diabetic animal models showed that the release profile of 
the insulin administered by 3DMNMEMS was identical to that of the SC injection. The 
3DMNMEMS group showed a more moderate decrease in plasma insulin concentration at 6 hours 
after treatment (16.1 IU/mL) compared with SC injection (9 IU/mL at 6 hours after treatment), 
indicating a more sustained insulin action.44 The relative pharmacological availability (RPA) of 
3DMNMEMS was 105.14% compared with SC injection. 

 

Fig. 2 3D printed hollow MN microelectromechanical system (3DMNMEMS). A Hollow MN 
fabricated by 3D printing. B 3DMNMEMS configuration. C Hypoglycemic effect of 
3DMNMEMS in diabetic mouse. Reproduced with permission from44 

A number of hollow MN devices, including the MicronJet® (Nanopass Technologies), 
MicronJet600® (Nanopass Technologies), and the Microstructured Transdermal System® (3 
MTM), are now on the market and some are being tested in clinical settings. Without further 
formulation research, hollow MNs can administer injectable formulations that have already been 
developed. As a result, to administer biological medications like insulin and vaccines, the majority 
of clinical studies nowadays use hollow MN devices that are readily accessible on the market.28 
An efficient substitute for conventional insulin injections is intradermal infusion of insulin using 
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hollow MNs. It is pain-resistant and dramatically reduces local and regional skin 
irritability.Numerous academic investigations and clinical trials have shown that intradermal 
insulin infusion has better PK/PD characteristics, a quicker time to achieve the maximum blood 
concentration (Cmax), a quicker start of action, and a higher bioavailability than conventional 
subcutaneous insulin injection.45 

There are still certain areas where hollow MNs can grow. Due to the dermal tissue's density, when 
hollow MNs are put into the skin, the bore in the needle tip can quickly get blocked, which can 
impact drug delivery.46 The design of the hollow MNs' tips is crucial since bigger tip apertures 
need more insertion effort, which might break the needle, but smaller tip openings are simpler to 
stop.47 Additionally, the squeezed skin tissue may increase liquid flow resistance.46,48 This may be 
avoided by using the MN tip's side-open hole design.49,50 

The earliest silicon MNs created by Griss et al. were hollow out-of-wafer-plane devices with 
orifices in the shaft rather than the tip.51 This hollow MN array demonstrated low liquid flow 
resistance, a sizable contact area between fluid and skin tissue, and reduced clogging potential. 
Hollow MNs are also prone to breaking due to the empty void and the fragile materials employed. 
The breaking force and insertion force of hollow MNs should be increased in order to achieve safe 
skin implantation. To prevent needle breakage, geometry is crucial in determining the insertion 
force. First, Davis et al. empirically evaluated and theoretically studied the breaking force and 
insertion force of MNs into the skin.52 

Additionally, although less painful than the subcutaneous approach, insulin administration through 
hollow MNs is nonetheless uncomfortable. If MNs are intended to function on the dermis and have 
no access to blood arteries or nerve fibres, then theoretically they should be painless.53,54 Micro-
syringes and hollow MNs both use similar delivery systems. The administration discomfort for 
hollow MNs can be influenced by the infusion volume and liquid formulation flow rate in addition 
to needle shape.55,56,57 Gupta et al. discovered that higher pressure applied and MN retraction both 
enhanced discomfort, however that lower flow rate and concurrent hyaluronidase treatment would 
lessen pain.58 

3.2 Dissolving MNs 

Due to their evident benefits, including as easy preparation, high drug loading, and one-step 
administration, dissolving MNs have recently drawn increasing amounts of interest. They are also 
often utilised to administer insulin in literature study. Insulin is incorporated into a water-soluble 
or biodegradable polymer matrix using dissolving MNs, and insulin is released when the inserted 
MNs dissolve or degrade. The versatility of drug loading is one advantage of dissolving MNs. 
Depending on the MN array, only certain needle layers or the needle tip can contain drugs.59 
Additionally, by modifying drug loading, drug distribution, and the polymer matrix's dissolving 
profile, quantitative and controlled drug release may be obtained.60,61 Additionally, preserving the 
action of insulin to some extent is made possible by the solid-state storage of dissolving MNs. The 
need for rigorous cold chain storage during transit is decreased by the fact that insulin encapsulated 
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in MNs made with dextrin may be kept at 40 °C for 1 month without significantly impairing insulin 
action.62 

The majority of water-dissolvable polysaccharides are utilised to create dissolving MNs , such as 
hydroxypropyl methylcellulose (HPMC), carboxymethyl cellulose (CMC), hydroxypropyl 
cellulose (HPC), hyaluronic acid (HA), dextran, sodium alginate, amylopectin, and sodium 
chondroitin sulphate.63-65 Additionally, gelatin, poly—glutamic acid (-PGA), polyvinyl 
pyrrolidone (PVP), poly(vinylpyrrolidone-co-methacrylic acid) (PVP-MAA), polyvinyl 
pyrrolidone-cyclodextrin (PVP-CD), and polyvinyl pyrrolidone-polyvinyl alcohol (PVP-PVA) are 
some polymers having biodegrable.66-68 

Different micro-molding techniques, including casting, hot embossing, and injection moulding, 
can be used to create dissolving MNs. In the micro-molding process, a laser, an ion, or a template 
flip is used to first build an MN array mould with a tapered MN structure. The mould is 
subsequently filled with the polymer solution. The most common methods used to fill polymer 
into mould tips are centrifugation or vacuum. The MN array is obtained (Fig. 3), which is followed 
by curing and de-molding.69 Although this approach can increase manufacturing scale, it still has 
significant drawbacks. This manufacturing procedure entails a number of labor-intensive phases, 
including the creation of moulds, the preparation of the master batch, and the plasticization of 
thermoplastic polymers. Additionally, as polymer must be plasticized beyond its glass transition 
temperature , this approach may not be appropriate for insulin, which is heat-sensitive.70 
Researchers have thoroughly investigated water-soluble polymers, such as HA71 , -PGA, mixtures 
of starch and gelatin72 , and mixtures of fish gelatin and sucrose73, in the fabrication of heat-
sensitive drugs loaded dissolving MNs in order to avoid the high temperature required for polymer 
dissolution in the micro-molding method. 
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Fig. 3 Steps of micro-molding method. Reprinted with permission from69. 

To overcome the temperature difficulties of the melting process in micro-molding techniques, 
certain novel manufacturing techniques have been developed. Dissolving MNs have been 
produced using N-vinylpyrrolidone, the PVP monomer that can be polymerized at room 
temperature by UV irradiation. By employing this technique, organic solvents can be avoided. 
While polymerization will need more than 30 minutes of UV exposure, this may result in drug 
deterioration. To reduce the length of UV exposure, Kathuria et al. combined thermal and 
photopolymerization.74 As a model component, hyaluronic acid (HA, 15 kD) was selected. Pre-
polymerization of N-vinylpyrrolidone solution involved heating it for two minutes at 90 °C before 
allowing it to cool to room temperature. 

The N-vinylpyrrolidone solution was then mixed with HA, pipetted onto the PDMS mould, and 
exposed to UV light for 8 minutes. Pre-polymerization shortened UV exposure duration and 
slowed HA breakdown.74 This procedure reduced the amount of time needed for preparation and 
helped increase production. When using the micro-molding technique, the polymer solution is 
filled into the needle by centrifugation or vacuuming, which results in subpar MN tip production 
and impossibility to remove MNs from the mould.75 McGrath et al [employed atomized spraying 
as opposed to centrifugation or vacuuming using a two-fluid external mixing nozzle to fill the 
solution of MNs materials into PDMS mould.76 The filled moulds could be dried at room 
temperature after spraying. They created dissolving MNs using this spray technique using a variety 
of sugars, such as trehalose, fructose, and raffinose, as well as polymeric ingredients, such as PVA, 
PVP, CMC, HPMC, and sodium alginate. This enhanced micro-molding technique is 
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advantageous for medications that are sensitive to high temperature or viscosity since it enables 
continuous manufacture under benign processing conditions. 

Currently, researchers are looking into more safe ways to create dissolving MNs. A brand-new 
droplet-born air blowing (DAB) technique was shown by Kim et al. to create dissolving MNs.77 
The basic structure of MNs was first created using this technique (Fig. 4), which involved 
dispensing drug-free biopolymer droplets (CMC, 90 kDa) to a flat surface before pouring droplets 
carrying pharmaceuticals over the base structure. The upper plate was then rotated upward after 
moving downward to meet the drug droplets and elongate them to create the tip of MNs. To remove 
the water and solidify the MNs, air blowing was used. 

With a temperature range of 4 to 25 °C, DAB offers a quick and gentle way for fabricating MN 
that can be finished in just ten minutes. The diabetes mouse with its head shaved received the 6 9 
MN array carrying 0.07 IU of insulin. After 60 minutes, there was a significant drop in blood 
glucose levels, which rebounded after 120 minutes. Comparing insulin-loaded MNs to 
subcutaneous injection, similar results were obtained in terms of bioavailability (96.6 2.4%), and 
hypoglycemia profile. In order to encapsulate lysozyme, which was temperature-sensitive, Shayan 
et al. also created dissolving MNs using the DAB technique.78 The stabiliser, trehalose, was 
introduced. The findings demonstrated that after MNs were created, lysozyme activity was kept at 
a high level of 99.8% 3.8%.This demonstrated that the lysozyme activity was not significantly 
affected by air blow drying. Additionally, the lysozyme activity was kept constant after 12 weeks 
of storage at 99.8 3.8% at 4 °C and 96.6 3.0% at 25 °C. These experiments show that encasing 
heat-sensitive biomolecules in MNs using DAB may be a promising technique. 
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Fig. 4 Schematic illustration of droplet-born air blowing (DAB) method. Reprinted with 
permission from77. 

Mechanical strength is one of the most crucial factors in dissolving MNs since it is necessary for 
proper skin implantation. When compared to insoluble materials like silicon and metals, MNs 
constructed of water-soluble polymers typically have lower mechanical strength.79,80 After drug 
encapsulation, MNs' mechanical strength may become further lessened.81,82 The fracture strength 
of polymer MNs was experimentally examined during skin insertion by Park et al. They discovered 
that the fracture strength of MNs rose with increasing material elastic modulus and needle base 
diameter, but decreased with increasing MNs length.83 When the material's elastic modulus was 
less than 1 GPa for the MNs they were studying, the MNs would buckle before puncturing the 
skin. These findings offer exceptional guidance for choosing MNs materials, particularly for 
choosing polymer materials. The hardness and toughness of MNs made from a single material are 
often not as good as those made from numerous materials with various physical characteristics. To 
increase the mechanical strength, Yu et al. created HA and 3-aminophenylboronic acid-modified 
alginate insulin-dispersing MNs. Insulin that was encapsulated might be released in the deep skin, 
according to an in vitro penetration test. RPA and relative bioavailability (RBA) were both shown 
in in vivo investigations to be above 90%.84 Before, it had been demonstrated that CaCO3 enclosed 
in a polymer matrix improved mechanical strength.85 Liu et al. produced a dissolving MNs patch 
with PVP after encapsulating insulin in CaCO3 microparticles.86 Due to its pH-sensitive design, 
the MN patch demonstrated great mechanical strength and delayed insulin release. 
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The needle body may not fully penetrate the skin due to skin flexibility, wasting the medication. 
To address this problem, Chen et al. created an MN array with a PVA/PVP supporting structure to 
increase mechanical strength and counteract the effects of skin deformation during the MN 
insertion process.67 The poly-glutamic acid needle tip of the MN array was loaded with insulin. 
The supporting structure and needle tip of the MN array could disintegrate in 4 minutes after being 
inserted into the skin, and the needle tip then quickly released insulin.In diabetic rats, there was no 
noticeable difference in the insulin profile between the first and second dose, demonstrating the 
great degree of repeatability and accuracy in the insulin delivery provided by the MN patch. On 
diabetic rats, the dissolving MN patch had a hypoglycemic effect similar to subcutaneous injection. 

For diabetics, dissolving MNs can provide a long-lasting and constant glucose level, which is 
desirable for long-acting insulin. But several difficulties still need to be taken into account. The 
first is the issue with safety. Polymer deposition in the skin following a single dosage might not 
be a concern. However, it is not negligible for medications like insulin that must be used over an 
extended period of time. Theoretically, prolonged exposure to MNs that dissolve might lead to 
polymer deposition and buildup in skin tissue, which would then cause an immunological response 
and accumulate in the liver or potentially the entire body.30  Potential consequences of polymer 
deposition in the skin are not currently well understoodAdditionally, the study period was brief, 
and the current safety assessment is primarily based on animal testing. In the McCrudden et al. 
investigation, a dissolving MN route with an area of 0.49 cm2 was created to distribute sodium 
ibuprofen.87 Per 1 cm2 MN patch size, 5–10 mg of polymer were deposited in rat skin. A patch 
measuring 10 cm2 would be required when the effective dose in rats was translated to humans, 
which indicated that 50–100 mg of polymer would deposit in the skin. There were no issues raised 
during the author's studies of the polymers' biocompatibility in cells and MNs tolerance in rats.The 
long-term safety of these two investigations was unknown because they only lasted 24 hours in 
cells and one administration in rats. Vicente-Perez et al. investigated the efficacy of hydrogel and 
dissolving MNs for repeated applications.88 Hydrogel MNs made of Polyethylene glycol (PEG, 
Mw = 10,000 Da) were applied twice daily for three weeks and dissolving MNs made of methyl-
vinyl ether-co-maleic acid (PMVE/MA, Mw = 1,500,000 Da and PVP, Mw = 58,000 Da) were 
applied once daily for five weeks. Studies conducted in vivo on hairless mice revealed no 
observable changes in the appearance and barrier function of skin over the duration of the 
experiment.In addition, there were no statistically significant changes in the levels of the 
biomarkers C-reactive protein, immunoglobulin G, interleukin-1, and tumour necrosis factor.88 
Regulatory authorities may require further information about the amount of polymer left in the 
skin, the rate and pathway of clearance, and the long-term safety when examining the translation 
of this type of MNs into the clinic. 

4. Conclusion 
When compared to standard SC insulin injection, MN technology offers significant advantages in 
terms of pain reduction from repeated injections and ease of administration, which can help 
diabetes patients who are afraid of needles live better lives.89 A simple two-layer method is used 
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to create a gelatin/CMC MN patch, which is a perfect substitute for regular insulin injection. It 
offers a simple, handy solution that is effective in regulating blood sugar in diabetic mice. After 
being released from MNs, insulin still has pharmacological action and significantly lowers blood 
sugar levels in diabetic mice. These combined findings imply that dissolving gelatin/CMC MNs 
are potentially effective transdermal delivery systems for a variety of biomolecules.90 
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